Начало >> Статьи >> Архивы >> Рентгенодиагностика заболеваний костей и суставов

Механические влияния - Рентгенодиагностика заболеваний костей и суставов

Оглавление
Рентгенодиагностика заболеваний костей и суставов
Физико-химический состав костного вещества
Созидание и разрушение костной ткани
Основные закономерности процессов костеобразования
Местные анатомо-физиологические изменения в костной ткани
Подвоз к костям солей
Влияние витамина D, внутрисекреторной деятельности околощитовидных желез
Действие фосфатазы, пищеварительных и выделительных органов
Влияние местного кровоснабжения
Механические влияния
Нервная регуляция костеобразования
Врожденный черепно-лицевой дизостоз
Врожденный черепно-ключичный и челюстно-лицевой дизостоз
Акроостеолиз
Артрогрипоз, гипофосфатазия
Рахит
Детская цинга
Нарушения баланса витамина А
Ксантоматоз
Эозинофильные гранулемы костей
Ксантогранулемы
Болезнь Гоше
Костные поражения при анемиях
Лейкоз
Хлоролейкоз
Лимфогранулематоз
Полицитемии
Поражения костей при геморрагических диатезах

Образование костной ткани подчиняется без всяких сомнений и механическим влияниям. Поскольку костный скелет является сложной механической конструкцией, костеобразование происходит под знаком и этих чисто механических факторов.
Как известно, костная ткань состоит из коркового, кортикального, компактного и губчатого, спонгиозного рыхлого костного вещества. Различие между корковым и губчатым веществом в основном только количественное, точнее — это различие в относительной плотности. Если элементарные гаверсовы системы (гаверсовы каналы окружены каждый в отдельности рядом — от трех до десяти — концентрических костных цилиндров, ламелл, и составляют так называемый остеон) в корковом веществе плотно прилегают друг к другу, тесно сомкнуты, то в губчатом веществе гаверсовы цилиндры составляют более тонкие стропила. Переход от компактного коркового вещества на губчатое не столь уж резок, как это обычно считают. Такова, например, архитектоника метафизов, где корка постепенно разволокняется в губчатую формацию. В патологических условиях корковое вещество легко „спонгиозируется”, а губчатое вещество „кортикализируется”. Еще в 1843 г. Н. И. Пирогов в своем "Полном курсе прикладной анатомии человеческого тела" писал: „наружный вид каждой кости есть осуществленная идея назначения этой кости”.
В 1870 г. Юлиус Вольф (Julius Wolff) опубликовал свои тогда нашумевшие наблюдения над внутренней архитектоникой костного вещества. Вольф показал, что когда при нормальных условиях кость меняет свою функцию, то соответственно новым механическим требованиям перестраивается и внутренняя структура губчатого вещества. Вольф считал, что механические силы являются для строения кости „абсолютно доминирующими”. Широко известны замечательные исследования о функциональном строении кости Π. Ф. Лесгафта. Он был убежден в том, что, зная деятельность отдельных частей человеческого тела, можно определить форму и размер их и наоборот — по форме и размерам отдельных частей органов движения определить качество и степень их деятельности. Взгляды П. Ф. Лесгафта и Вольфа получили в биологии и медицине весьма широкий отклик, они вошли по все учебники, так называемые „законы трансформации костей” были приняты за основу врачебных представлений о костном строении. И поныне еще многие рассматривают по старой традиции механические силы как основной и решающий, чуть ли не единственный фактор, объясняющий дифференцированное строение кости. Другие же исследователи отвергают учение Π. Ф. Лесгафта и Вольфа как грубо механистическое.
Такое положение требует от нас критического рассмотрения теории трансформации костей. Как с точки зрения диалектического материализма следует относиться к этим „законам трансформации”? На этот вопрос мы вкратце можем ответить следующими соображениями.
Прежде всего, о каких конкретно механических силах здесь идет речь? Какие силы оказывают влияние на кости? Эти силы — сжатие (сдавление), растяжение, сгибание и разгибание (в физическом, а не в медицинском смысле), а также скрючивание (торсия). Например, в проксимальном отделе бедренной кости — этой излюбленной модели для аналитического учета механических факторов — при стоянии человека головка бедра испытывает сдавление сверху вниз, шейка выдерживает сгибание и разгибание, точнее сжатие в нижнемедиальной и растяжение в верхнелатеральной части, диафиз же находится под воздействием сжимания и вращения вокруг его длинной оси, т. е. скрючивания. Наконец, все костные элементы подвергаются еще из-за постоянно действующей мышечной тяги (тракции) силе растяжения.
Прежде всего, имеют ли кости действительно лесгафтовское „функциональное строение”, действительно ли можно сказать словами Ф. Энгельса , что в костях „форма и функция обусловливают взаимно друг друга?” На эти вопросы следует ответить недвусмысленно — положительно. Несмотря на ряд возражений, все же „законы трансформации” анатомо-физиологически и клинико-рентгенологически в основном себя оправдывают. Факты говорят в пользу их соответствия действительному положению вещей, объективной научной истине. Действительно, каждая кость при нормальных и патологических условиях приобретает внутреннее строение, отвечающее этим условиям ее жизнедеятельности, тонко дифференцированным физиологическим ее отправлениям, ее узко специализированным функциональным качествам. Пластинки губчатого вещества располагаются именно так, что в основном совпадают с направлениями сжатия и растяжения, сгибания и скрючивания. Параллельно идущие стропила на мацерированной кости и их теневые изображения на рентгенограммах говорят о наличии в соответствующих направлениях силовых плоскостей, характеризующих функцию данной кости. Костные элементы являются в основном каким-то прямым выражением и воплощением механических силовых траекторий, а вся архитектоника костных трабекул — это наглядный показатель самой тесной взаимосвязи, которая существует между формой и функцией. При наименьшем количестве крепкого минерального строительного материала костное вещество приобретает наибольшие механические качества, прочность и упругость, сопротивление к сжатию и растяжению, к сгибанию и скрючиванию.
При этом важно подчеркнуть, что архитектоника кости выражает не столько опорную, статическую функцию отдельных костей скелета, сколько совокупность сложных двигательных, моторных его функций в целом и в каждой кости и даже в каждом отделе кости в частности. Иными словами, расположение и направление костных стропил становится понятным, если учесть также весьма сложные по силе и направлениям векторы, определяемые мышечной и сухожильной тягой, связочным аппаратом и другими элементами, характеризующими скелет как многорычаговую двигательную систему. В этом смысле понятие о костном скелете как о пассивной части двигательного, локомоторного аппарата нуждается в серьезной поправке.
Таким образом, основная ошибка Вольфа и всех за ним следующих заключается в их непомерной переоценке значения механических факторов, в одностороннем их толковании. Еще в 1873 г. наш отечественный автор
С.  Рубинский отверг утверждение Вольфа о существовании геометрического подобия в строении губчатого вещества кости во всех возрастах и указал на ошибочность взгляда Вольфа, „который смотрит на кость как на неорганическое тело”. Хотя механические силы и играют известную роль в формировании костной структуры, сводить всю эту структуру к одним только силовым траекториям, как это вытекает из всего изложенного в этой главе, само собой разумеется, никак нельзя, —есть еще ряд исключительно важных моментов, помимо механических, которые влияют на образование костной ткани и на ее структурное оформление и которые никак не могут быть объяснены механическими закономерностями. Несмотря на их прогрессивное значение в периоде возникновения и пропаганды, эти исследования в силу своей подкупающей убедительности все же объективно задержали, затормозили единственно правильное всестороннее изучение всей совокупности факторов, определяющих остеогенез. Авторам, огульно отрицающим механические силы в качестве фактора костеобразования, следует указать, что это неправильная, антинаучная, упрощенческая точка зрения. Вместе с тем наша философия возражает не против учета в биологии и медицине реально существующих и действующих механических факторов, а отвергает механистический метод, механистическое мировоззрение.

Именно в рентгенологическом исследовании биологическая наука и медицина получили исключительно богатый эффективный метод прижизненного, да и посмертного определения и изучения функционального строения элементов костного скелета. У живого это изучение к тому же возможно и в эволютивно-динамическом аспекте. Значение этого метода трудно переоценить. Механические влияния сказываются в остеогенезе особенно при перестройке скелета и отдельных костей в зависимости от трудовых, профессиональных, спортивных и других моментов в рамках физиологического приспособления, но не менее ярко они проявляются и в патологических условиях — при изменении механических сил в случаях анкилозов суставов, артродезов, неправильно сросшихся переломов, последствий огнестрельных ранений и т. д. Все это подробно изложено ниже.
Точность и достоверность результатов рентгенологического исследования, однако, как, впрочем, и всякого метода, зависят от его правильного использования и толкования. В этой связи мы должны сделать несколько существенных замечаний.
Во-первых, исследовании многочисленных авторов, особенно Я. Л. Шика, показали, что так называемые костные балки, трабекулы — это на самом деле вовсе не обязательно всегда именно балки, т. е. колонки, цилиндрические стропила, а скорее всего плоскостные образования, пластинки, сплющенные кулисы. Эти последние и следует считать основными анатомо-физиологическими элементами губчатого строения кости. Поэтому, пожалуй, более правильно вместо привычного и даже общепринятого наименования „балки” пользоваться термином „пластинки”. И вполне правы Я. Л. Шик и С. В. Гречишкин, когда указывают, что рентгенограммы губчатой кости воспроизводят в виде характерных полосок и линейных теней главным образом те скопления костных пластинок, которые располагаются орторентгеноградно, т. е. по ходу рентгеновых лучей, своими гранями, которые „стоят ребром”. Расположенные же в плоскости проекции костные пластинки представляют лишь слабое препятствие для рентгеновых лучей и на снимке по этой причине плохо дифференцируются.
Говоря о рентгенологическом методе исследования костной структуры, мы в связи с этим должны здесь еще раз подчеркнуть, что структура костей в рентгенологическом изображении — это понятие далеко не чисто морфологическое и анатомо-физиологическое, а в значительной степени и скиалогически обусловленное. Рисунок губчатой кости на рентгенограмме — это в какой-то мере условное понятие, так как рентгенографически в одной плоскости суммарно изображаются многочисленные костные пластинки, фактически располагающиеся в самой объемно-трехмерной телесной кости во многих слоях и плоскостях. Рентгенологическая картина в значительной мере зависит не только и не столько от формы и размеров, сколько от расположения структурных элементов (Я. Л. Шик и С. В. Гречишкин). Значит рентгенологическое исследование в какой-то мере искажает истинную морфологию отдельных костей и отделов костей, имеет свои специфические особенности, и отождествлять безоговорочно рентгенологическую картину с анатомо-физиологической — это означает совершать принципиальную и практическую ошибку.



 
« Религия и психические болезни   Рентгенодиагностика заболеваний позвоночника »