Начало >> Статьи >> Литература >> Аритмии сердца (1)

Аритмия, вызванная автоматизмом и триггерной активностью - Аритмии сердца (1)

Оглавление
Анатомия и гистология синусового узла
Эмбриогенез синусового узла, межузловое проведение
Область атриовентрикулярного соединения
Гистология области атриовентрикулярного соединения
Специализированные ткани желудочков
Атриовентрикулярные фиброзные кольца
Добавочные атриовентрикулярные пути
Узложелудочковые и пучково-желудочковые связи
Проводящие ткани и синдром внезапной детской смерти
Атриовентрикулярные проводящие ткани и перегородочные структуры
Одножелудочковое атриовентрикулярное соединение
Врожденная блокада сердца
Нормальная и аномальная электрическая активность сердечных клеток
Фазы деполяризации потенциала действия
Спонтанная диастолическая деполяризация и автоматизм
Потенциалы в нормальных клетках синусового и атриовентрикулярного узлов
Влияние патологических состояний на потенциалы сердечных клеток
Аномальный автоматизм и триггерная активность
Циркуляция вследствие дисперсии рефрактерности
Аритмия, вызванная автоматизмом и триггерной активностью
Связь между аномалиями электролитного состава и аритмией
Антиаритмические эффекты калия
Влияние калия на синусовый и атриовентрикулярный узлы
Гипокалиемия
Аритмогенные эффекты гипокалиемии
Гипокалиемия и ионы
Гипокалиемия и антиаритмические препараты, медленные каналы
Инвазивное электрофизиологическое исследование сердца
Нарушениям предсердно-желудочкового проведения

Медленное проведение и циркуляция, обусловленные анизотропностью структуры сердечной мышцы

Сердечная мышца анизотропна, т. е. ее анатомические и биофизические характеристики меняются в зависимости от направления, в котором они определяются относительно сердечного синцития [88]. Такая анизотропность, влияющая на проведение сердечного импульса, может иногда стать причиной циркуляции [89, 90]. Скорость проведения импульсов в направлении, перпендикулярном длинной оси предсердных или желудочковых волокон, значительно меньше, чем в направлении, параллельном этой оси. Очень медленное проведение наблюдается даже при нормальных величинах потенциала покоя и нарастания потенциала действия. Медленное проведение обусловлено эффективным осевым сопротивлением (сопротивление току в направлении распространения возбуждения), которое гораздо выше в направлении, перпендикулярном проводящему волокну, чем в параллельном ему направлении [88—90]. Более высокое осевое сопротивление частично связано с меньшим количеством и меньшей длиной вставочных дисков, соединяющих боковые поверхности миокардиальных волокон, по сравнению с таковыми, соединяющими торцевые поверхности. Медленное проведение является одним из компонентов, необходимых для возникновения циркуляции, и может быть одним из факторов, способствующих появлению циркуляции в нормальном миокарде предсердий или желудочков.

Аритмия, вызванная автоматизмом и триггерной активностью

 

Доминирование синусового узла над латентными водителями ритма

Клетки многих областей сердца в норме способны спонтанно генерировать импульсы. Эти области включают синусовый узел, специализированные волокна предсердий, коронарный синус, АВ-соединение и клапаны, а также специализированную проводящую систему желудочков. Однако при заболевании сердца возникновение импульса может наблюдаться практически везде, даже в рабочем миокарде предсердий и желудочков. Клетка (или небольшая группа клеток) становится водителем ритма сердца в том случае, если она первой деполяризуется до порогового уровня и вызывает появление импульса, который обязательно проводится по всему сердцу и возбуждает другие потенциальные водители ритма, прежде чем они смогут спонтанно деполяризоваться до порогового уровня. Место инициации такого импульса получило название доминирующего водителя ритма. Другие области, способные стать водителем ритма, но стимулируемые доминирующим водителем ритма, называются подчиненными, или латентными, водителями ритма.

 

снижение частоты

Рис. 3.18. Основные механизмы, обусловливающие изменения частоты разрядов пейсмекерных волокон.
Верхняя диаграмма: снижение частоты, вызванное уменьшением наклона диастолической, или пейсмекерной, деполяризации (от а и б) и соответствующее увеличение времени, необходимого для изменения мембранного потенциала до порогового уровня (ПУ). Нижняя диаграмма: снижение частоты, связанное со сдвигом порога потенциала от ПУ-1 до ПУ-2 и соответствующее увеличение продолжительности цикла (от б до в); показано также дальнейшее снижение частоты вследствие повышения максимального уровня диастолического потенциала (сравните а—в с г—д) [3].

Собственная частота, с которой клетка-пейсмекер генерирует импульсы, определяется взаимодействием трех факторов: 1) уровнем максимального диастолического потенциала; 2) уровнем порога потенциала; 3) степенью наклона в фазу 4 деполяризации. Изменение любого из этих факторов влияет на время, затрачиваемое в фазу 4 на изменение мембранного потенциала от максимального диастолического уровня до порогового уровня потенциала (рис. 3.18); следовательно, оно влияет и на частоту возникновения импульса. Например, если максимальный диастолический потенциал возрастает (становится более отрицательным), спонтанная деполяризация до порогового потенциала осуществляется дольше и частота возникновения импульса снижается (см. рис. 3.18). И наоборот, с уменьшением максимального диастолического потенциала частота инициации импульса повышается. Аналогично этому, изменения порогового уровня потенциала или степени наклона во время фазы 4 деполяризации влияют на частоту возникновения импульсов. В здоровом сердце наиболее быстрая деполяризация до порога отмечается в клетках синусового узла; следовательно, собственный ритм синусового узла выше, чем в других клетках. Поэтому синусовый узел обычно является доминирующим водителем ритма.
Если активность синусового узла внезапно прекращается, латентный водитель ритма не сразу начинает генерировать импульсы: обычно они появляются лишь после продолжительного периода молчания. Частота инициации импульсов латентным водителем ритма вначале весьма невелика, но постепенно она повышается до определенного стабильного уровня, который, однако, ниже исходного уровня в синусовом узле [91]. Период молчания, следующий за прекращением синусового ритма, отражает утомление от ингибирующего влияния, оказываемого доминирующим водителем ритма на латентный водитель ритма. В здоровом сердце подобное торможение обычно обеспечивает синусовому узлу функционирование в качестве единственного водителя ритма; оно названо подавлением усиленной стимуляцией (overdrive suppression).
Такое подавление обусловлено более частой стимуляцией клетки-пейсмекера по сравнению с ее собственным спонтанным ритмом и опосредовано повышенной активностью Na—К-насоса. Так как ионы натрия входят в клетку во время каждого потенциала действия, с повышением частоты стимуляции увеличивается количество натрия, входящего в клетку за данное время. Частота активности натриевого насоса в значительной мере определяется внутриклеточной концентрацией натрия, так что при высокой частоте стимуляции активность насоса возрастает [92]. Как уже отмечалось, Na—К-насос обычно больше работает на выведение ионов Na+ из клетки, чем на введение в нее ионов К+, эффективно генерируя таким образом суммарный выходящий (гиперполяризующий) ток Na+. Когда частота стимуляции латентных клеток-пейсмекеров выше их собственного ритма, проходящий благодаря насосу гиперполяризующий ток дополнительно подавляет спонтанное возникновение импульсов в этих клетках. После прекращения активности под влиянием доминирующего водителя ритма такое угнетение латентных клеток-пейсмекеров ответственно за период молчания, продолжающийся до тех пор, пока концентрация Nа+ внутри клетки, а значит, и в токе, проходящем'благо даря насосу, не снизится настолько, чтобы латентные клетки-пейсмекеры смогли деполяризоваться до порогового уровня, обеспечив тем самым возникновение следующего импульса. Представляется вполне вероятным, что доминирующий водитель ритма контролирует другие потенциальные пейсмекеры с помощью механизма подав ления усиленной стимуляцией независимо от влияния нормального автоматизма или триггерной активности на пейсмекерность других клеток, ведь амплитуда постдеполяризации, при которой возникают триггерные импульсы, также должна снижаться с увеличением тока, проходящего благодаря насосу. Однако влияние доминирующего синусового водителя ритма на нормальный и аномальный (при низком мембранном потенциале) автоматизм может существенно различаться. Аномальный автоматизм (в отличие от нормального) не может подавляться усиленной стимуляцией [93]. Поэтому возникновение импульсов в латентных водителях ритма с аномальным автоматизмом может наблюдаться сразу же после внезапного прекращения активности синусового узла.

Механизмы смещения доминирующего водителя ритма

 

Смещение места возникновения импульсов (водителя ритма) за пределы синусового узла может быть обусловлено либо неспособностью импульсов к активизации сердца, либо усилением их инициации в латентном водителе ритма. Генерирование импульсов в синусовом узле может быть замедленным или даже подавленным в результате изменения активности вегетативной нервной системы [94] либо вследствие поражения синусового узла [95]. Снижение симпатической активности или повышение парасимпатической (вагусной) активности угнетает автоматизм синусового узла; заболевание синусового узла может привести к дегенерации его клеток. Возможен и другой вариант: проведение возбуждения из синусового узла в предсердия может быть ухудшено в какой-то части пути. При любом из указанных состояний может иметь место ускользание латентного водителя ритма. Устранение сверхстимуляции в результате ослабления (или исчезновения) синусового ритма позволяет диастолической деполяризации латентного водителя ритма достичь порогового уровня и вызвать появление импульсов. Такой ускользающий ритм в норме наблюдается в АВ-соединении (АВ-узел или пучок Гиса), так как собственный ритм клеток этой области выше, чем в других эктопических зонах. Однако иногда патологический процесс, подавляющий инициацию импульсов в синусовом узле, угнетает ее и в АВ-соединении [95]; тогда место возникновения эктопических импульсов обычно находится на каком-либо другом участке проводящей системы предсердий или желудочков. Механизмом спонтанной диастолической деполяризации, предшествующей эктопическому ритму, может служить либо нормальный пейсмекерный ток, возникающий при высоком мембранном потенциале в нормальных волокнах Пуркинье, либо пейсмекерный ток, наблюдаемый при более низком мембранном потенциале в АВ-клапанах или АВ-узле.
Многие факторы способны повысить активность латентного водителя ритма и вызвать смещение места инициации возбуждения в эктопическую зону, даже если синусовый узел функционирует нормально. Например, норадреналин, высвобождаемый симпатическими нервными окончаниями, ускоряет спонтанную диастолическую деполяризацию большинства эктопических клеток-пейсмекеров, позволяя мембранному потенциалу этих клеток достигнуть порогового уровня, прежде чем они будут активированы импульсом, проведенным из синусового узла [96]. Норадреналин может выделяться локально в определенных очагах эктопической активности, вызывая тем самым смещение водителя ритма [97, 98]. Такой эффект катехоламинов может быть результатом его хорошо известного действия на нормальный пейсмекерный ток в волокнах Пуркинье [99] или же действия на пейсмекерные токи, возникающие при более низких мембранных потенциалах. Известно также, что норадреналин увеличивает амплитуду задержанной постдеполяризации в клетках митрального клапана и коронарного синуса [40, 41], и если постдеполяризация достигает порогового уровня, то триггерная активность может быть инициирована при частоте выше синусовой. Заболевания сердца также могут привести к возникновению активности латентного водителя ритма; так, снижение мембранного потенциала может обусловить появление автоматической активности в клетках предсердий и желудочков, а также в волокнах Пуркинье, как было описано ранее. Такой тип спонтанной активности часто наблюдается при частоте выше синусовой, а значит, место инициации возбуждения может при этом сместиться в пораженную область сердца. Как отмечалось выше, автоматическая активность, вызванная снижением мембранного потенциала, по-видимому, не угнетается усиленной стимуляцией, исходящей из синусового узла.



 
« Анемии   Аритмии сердца (2) »