Начало >> Статьи >> Литература >> Аритмии сердца (1)

Гипокалиемия - Аритмии сердца (1)

Оглавление
Анатомия и гистология синусового узла
Эмбриогенез синусового узла, межузловое проведение
Область атриовентрикулярного соединения
Гистология области атриовентрикулярного соединения
Специализированные ткани желудочков
Атриовентрикулярные фиброзные кольца
Добавочные атриовентрикулярные пути
Узложелудочковые и пучково-желудочковые связи
Проводящие ткани и синдром внезапной детской смерти
Атриовентрикулярные проводящие ткани и перегородочные структуры
Одножелудочковое атриовентрикулярное соединение
Врожденная блокада сердца
Нормальная и аномальная электрическая активность сердечных клеток
Фазы деполяризации потенциала действия
Спонтанная диастолическая деполяризация и автоматизм
Потенциалы в нормальных клетках синусового и атриовентрикулярного узлов
Влияние патологических состояний на потенциалы сердечных клеток
Аномальный автоматизм и триггерная активность
Циркуляция вследствие дисперсии рефрактерности
Аритмия, вызванная автоматизмом и триггерной активностью
Связь между аномалиями электролитного состава и аритмией
Антиаритмические эффекты калия
Влияние калия на синусовый и атриовентрикулярный узлы
Гипокалиемия
Аритмогенные эффекты гипокалиемии
Гипокалиемия и ионы
Гипокалиемия и антиаритмические препараты, медленные каналы
Инвазивное электрофизиологическое исследование сердца
Нарушениям предсердно-желудочкового проведения

Значение повышенной концентрации калия при ишемии миокарда

Результаты экспериментов на животных позволяют предположить, что внезапная смерть после инфаркта миокарда может быть связана с фибрилляцией желудочков, вызванной освобождением калия из ишемического миокарда [34]. Harris показал, что начало аритмии у собак с окклюзией коронарной артерии совпадает с повышением концентрации калия в коронарной вене, отводящей кровь из зоны инфаркта [34]. У человека потеря калия при ишемии миокарда может быть вызвана учащением сердечного ритма. Механизм такой потери остается не до конца ясным. При исследовании сердца кролика Shine и соавт, показали, что потерю калия в первые 30—40 мин тотальной ишемии нельзя объяснить ослаблением натриево-калиевой АТФазной активности («насос») [35]. Следовательно, наиболее вероятной причиной транзиторного ишемического повреждения и потери калия является повышенная проницаемость клеточной мембраны [36].

фибрилляция желудочков

Рис. 4.6. Изменения внеклеточной активности К+ в субэндокарде (Эндо) и субэпикарде (Эпи), зарегистрированные в центре ишемической зоны с помощью двух калиевых электродов, соединенных вместе таким образом, что расстояние между их кончиками составляет 8 мм. НЗ — нормальная зона; ФЖ — фибрилляция желудочков [37].

Использование недавно разработанного К+-чувствительного электрода позволило нескольким группам исследователей в США [37] и других странах [38] прямо зарегистрировать изменения концентрации калия в интерстициальной жидкости в зоне острой ишемии миокарда. Эти исследования продемонстрировали тесную корреляцию между повышением внеклеточной концентрации калия и развитием тока повреждения, уменьшением рефрактерного периода, замедлением проведения, фибрилляцией желудочков (рис. 4.6) и угнетением сократимости сразу после коронарной окклюзии у собак и свиней [37, 38]. Эти наблюдения определенно подтверждают «калиевую теорию» аритмии при. острой ишемии миокарда, однако- они не исключают возможной роли дополнительных факторов.

Эффекты, обусловленные нестабильностью состояния при быстрых изменениях концентрации калия

 

Быстрое изменение внеклеточной концентрации калия может вызвать электрофизиологические эффекты, отличающиеся от наблюдаемых при соответствующей [K^^lo в стабильных условиях. Примером такого феномена может служить «парадоксальный» эффект Zwaardemaker-Libbrecht, который состоит в транзиторной остановке пейсмекерных волокон, сокращении длительности потенциала действия и гиперполяризации после изменения внеклеточной концентрации калия от низкой до нормальной или высокой. Это явление, изучавшееся на перфузируемом сердце кролика [18, 20], изолированных волокнах Пуркинье [6, 39] и наркотизированных собаках с дефицитом калия, связывают с резким повышением проницаемости мембраны для калия и ростом активности Na+-насоса [6, 39]. Клиническое значение данного эффекта, по-видимому, ограничивается случайными эпизодами брадикардии или АВ-блока, наблюдаемыми при быстром введении калия больным с тяжелой гипокалиемией и дефицитом калия [11].
Другим примером «парадоксального» эффекта калия в нестабильных условиях является уменьшение длительности комплекса QRS, наблюдаемое при быстром введении калия собакам [31], а также отрицательное инотропное действие калия, зависящее в большей степени от скорости его введения, чем от абсолютной величины его внеклеточной концентрации [10].

 

Гипокалиемия

Электрофизиологические механизмы

Мембранный потенциал покоя, или максимальный диастолический потенциал' сердечных волокон, возрастает (т. е. становится более отрицательным) при снижении внеклеточной концентрации калия. Однако рост потенциалов (т. е. гиперполяризация) можно было бы ожидать на основании расчетов с использованием уравнения Нернста для мембраны, свободно проницаемой для ионов калия. Гиперполяризация обнаруживается в сердечных волокнах всех типов, но ее длительность в клетках рабочего миокарда и пейсмекерных волокнах (например, в волокнах Пуркинье) различна [6, 40]. В непейсмекерных волокнах перфузия раствором с низким содержанием калия (0,54 мМ/л) вызывает продолжительную гиперполяризацию; в волокнах же Пуркинье гиперполяризация кратковременна, транзиторна и быстро сменяется нарастающей деполяризацией, обусловленной значительным ускорением диастолической деполяризации. Затем появляется спонтанная автоматическая активность, при которой МДП становится все менее отрицательным, пока, наконец, волокно не утратит свою возбудимость.
Реполяризация. С понижением [К+]0 реполяризация замедляется и длительность потенциала действия (ПД) возрастает [18]. Последний эффект сопровождается постепенным увеличением наклона фазы 2 и уменьшением наклона фазы 3, что приводит к появлению длинного «хвоста» потенциала действия. Наблюдается не только замедление наклона фазы реполяризации, но и изменение его формы — от выпуклой к вогнутой. При более продолжительной реполяризации увеличивается интервал времени, в течение которого разница между диастолическим и пороговым потенциалами уменьшается. Это означает, что период повышенной возбудимости увеличивается и возникновение эктопических возбуждений облегчается [18, 19]. При гипокалиемии «хвост» ПД в проводящей системе удлиняется больше, чем в желудочках, так что период неполной реполяризации в волокнах Пуркинье продолжительнее, чем в волокнах желудочков.
Диастолическая деполяризация. Гипокалиемия ускоряет диастолическую деполяризацию в волокнах Пуркинье [6, 24, 40] и, следовательно, способствует проявлению автоматической активности в молчащих волокнах (Пуркинье). Если такие волокна деполяризуются при величине мембранного потенциала, менее отрицательной, чем максимальный диастолический потенциал, скорость нарастания потенциала действия и скорость проведения снижаются. Повышенный автоматизм волокон Пуркинье может обусловить возникновение эктопических желудочковых комплексов и ритмов. Автоматическая активность может появиться даже в миокардиальных (непейсмекерных) волокнах, если реполяризация в них замедляется и пороговый потенциал достигается прежде, чем завершается реполяризация [19]. Такой тип автоматизма может запускаться повторяющейся стимуляцией [41].
Другие эффекты. Gettes и Surawicz показали, что гипокалиемия увеличивает разницу в длительности ПД волокон Пуркинье и волокон желудочков [6]. Сначала увеличение длительности ПД сопровождается более продолжительной рефрактерностью [6], однако последующее сокращение фазы 2 и замедление фазы 3 реполяризации позволяют волокну достигнуть порогового потенциала раньше, чем при нормальной концентрации калия, в результате чего рефрактерный период уменьшается. Клинические наблюдения также свидетельствуют о том, что гипокалиемия сокращает эффективный рефрактерный период, так как предсердные и желудочковые преждевременные комплексы у больных с гипокалиемией часто появляются после короткого интервала сцепления (рис. 4.7).
Проведение при гипокалиемии нередко замедляется вследствие того, что деполяризация начинается в не полностью реполяризованных волокнах, а также, вероятно, в результате увеличения разности между мембранным потенциалом покоя и пороговым потенциалом [19].

ЭКГ-изменения

 

Понимание электрокардиографических изменений, обусловленных гипокалиемией, облегчается при их сравнении с соответствующими изменениями потенциала действия кардиомиоцитов желудочков, как показано на рис. 4.8. Видно, что постепенное изменение реполяризации отражается на ЭКГ в виде прогрессирующего угнетения сегмента ST, уменьшения амплитуды T-волны и увеличения амплитуды U-волны в стандартном грудном отведении и отведениях от конечностей. До тех пор пока T-волна и U-волна разделены впадиной, длительность интервала Q—Т не меняется. На более поздней стадии гипокалиемии Г-волна и U-волна сливаются, поэтому точное измерение интервала Q—Т невозможно [11]. Поскольку гипокалиемия не влияет на продолжительность механической систолы, ее ЭКГ-проявления удобнее всего описать как постепенное смещение основной волны реполяризации от систолы к диастоле. На рис. 4.8, А амплитуда волны реполяризации, наблюдаемой во время систолы (T-волна), заметно выше аналогичной амплитуды во время диастолы (U-волна). На рис. 4,8, Б обе волны имеют одинаковую амплитуду, тогда как на фрагментах В и T амплитуда волны реполяризации, регистрируемой во время диастолы, превышает таковую во время систолы. Последние два типа ЭКГ-признаков гипокалиемии наиболее часто наблюдаются при плазматической концентрации калия ниже 2,7 мэкв/л [11, 42].

 

Электрокардиограммы больной, страдающей хроническим пиелонефритом

Рис. 4.7. Электрокардиограммы больной 65 лет, страдающей хроническим пиелонефритом и рвотой, до и после лечения солями калия. На ЭКГ от 13.07.66 типичные признаки гипокалиемии и короткий интервал сцепления эктопического экстравозбуждения в отведениях aVF и V1. Концентрация калия в плазме крови (К) указана в мэкв/л [II].

При значительной гипокалиемии амплитуда и длительность комплекса QRS увеличиваются. Комплекс QRS однородно расширяется, однако у взрослых это расширение редко превышает 0,02 с. У детей расширение QRS может быть более выраженным. Большая длительность QRS является результатом его расширения без изменения формы; это свидетельствует о том, что его появление вызвано замедлением внутрижелудочкового проведения без изменения последовательности деполяризации. Как отмечалось ранее, замедление внутрижелудочкового проведения при гипокалиемии может быть обусловлено гиперполяризацией миокарда желудочков или замедленным распространением импульсов в не полностью реполяризованных волокнах Пуркинье или миокардиальных волокнах желудочков.
Амплитуда и длительность Р-волны при гипокалиемии обычно повышены, а интервал Р—R часто слегка или умеренно увеличен.

электрокардиограмма

Рис. 4.8. Изменения потенциала действия желудочков и ЭКГ при снижении внеклеточной концентрации калия (K0) от 4 до 1 мэкв/л. Числа слева —мембранный потенциал (в мВ). Объяснение в тексте [11].



 
« Анемии   Аритмии сердца (2) »